LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
M.Sc. DEGREE EXAMINATION - PHYSICS

FIRST SEMESTER - NOVEMBER 2015

PH 1820 - MATHEMATICAL PHYSICS - I

Date: 11/11/2015
Time : 01:00-04:00

PART A

Answer all questions

10×2 = 20 marks

1. Show that the expression $y=a x^{2}+b x$ is reducible to linear form
2. Write the algorithm used in modified Euler method
3. Sketch the graph defined by $\bar{z} z=36$
4. Show that $Z e^{-i \theta}$ acts as an operator when operated on complex number Z_{2}
5. Write the terms contained in $\mathrm{G}=g_{i j} x^{i} x^{j} \quad$ for $\mathrm{i}, \mathrm{j}=3$
6. Show that Kronecker delta is a mixed tensor of order 2.
7. Define norm of a vector
8. Show that in R^{3} the vectors $\mathrm{V}_{1}=(-1,2,1)$ and $\mathrm{V}_{2}=(3,1,-2)$ are linearly independent
9. Show that all the roots of $P_{n}(x)=0$ are real and lie between -1 to +1 .
10. Express Hankel functions in terms of Bessel polynomials.

PART B

Answer any four questions
$4 \times 7.5=30$
11. Solve $\frac{d y}{d x}=y+x^{3}$ with $\mathrm{h}=0.01, \mathrm{y}(0)=1$ using Euler's method.
12. If $u=x^{3}+3 x^{2} y-3 x y^{2}-y^{3}$, find v such $u+i v$ is analytic.
13. Prove that the set all solutions of the differential equation $a \frac{d^{2} y}{d y^{2}}+b \frac{d y}{d x}+c y=0$ is a vector space.
14. i)Show that a skew-symmetric tensor of the second order has $\frac{n(n-1)}{2}$ different non-zero components
ii) Prove that the sum (or difference) of two tensors of same order and type is again a tensor of the same order and type.
15. Evaluate $\oint \frac{e^{z} d z}{\left(z^{2}+\pi^{2}\right)^{2}} \quad ;|z|=5$
16. Show that in the case of Bessel's polynomials $J_{n}(x)$ and $J_{-n}(x)$ are related for integral values of n and these two alone cannot be the solution of it.

PART C

Answer any four questions

17. Find the roots of the equation $f(x)=x^{3}-x-11=0$ corrected up to 3 decimal places using Bisection method.
18. Using contour megration eimaluate $\int_{0}^{\infty} \frac{1+d x}{\frac{1.6}{6}+1}$
19. Evaluate the fdillowin: exprisssions $\|\|\vec{i}+\vec{v}\|\| i i,)\|\vec{i}\|+\| \| \vec{v} \|$ iii) $\|-3\|\|\|$
 $=(-3,1,0,-5)$
20. Derive the components of moment of inertia tensor when a system consisting of number of point masses are in a rotatory motion.
21. Using the beta and gamma function evaluate i) $\int_{0}^{2} \sqrt[3]{8-x^{3}} x d x$
ii) $\int_{0}^{4} x^{\frac{3}{2}}(4-x)^{\frac{5}{2}} d x$ iii) $\int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{\tan \theta}} d \theta$
22. Evaluate $\int_{c}\left(z^{2}+3 z\right) d z$ along a) the circle $|z|=2$ from $(2,0)$ to $(0,2)$ in counter clockwise direction b) the straight line $(2,0)$ to $(0,2)$ c) the straight line $(2,0)$ to $(2,2)$ and then from $(2,2)$ to $(0,2)$.
